Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Nanobiotechnology ; 19(1): 273, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1403239

ABSTRACT

The control of contagious or refractory diseases requires early, rapid diagnostic assays that are simple, fast, and easy-to-use. Here, easy-to-implement CRISPR/Cas12a-based diagnostic platform through Raman transducer generated by Raman enhancement effect, term as SERS-CRISPR (S-CRISPR), are described. The S-CRISPR uses high-activity noble metallic nanoscopic materials to increase the sensitivity in the detection of nucleic acids, without amplification. This amplification-free platform, which can be performed within 30-40 min of incubation time, is then used for detection of SARS-CoV-2 derived nucleic acids in RNA extracts obtained from nasopharyngeal swab specimens (n = 112). Compared with the quantitative reverse transcription polymerase chain reaction (RT-qPCR), the sensitivity and specificity of S-CRISPR reaches 87.50% and 100%, respectively. In general, the S-CRISPR can rapidly identify the RNA of SARS-CoV-2 RNA without amplification and is a potential strategy for nucleic acid point of care test (POCT).


Subject(s)
CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spectrum Analysis, Raman , COVID-19/diagnosis , COVID-19/virology , Gene Expression Regulation, Fungal , Genes, Viral , Humans , RNA, Viral/analysis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL